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Abstract 

DEVELOPMENT AND VALIDATION OF TROMBE WALLS IN AUTODESK 

SIMULATION CFDTM  

Chelsea Renee Davis 

B.S., North Carolina State University 

M.S., Appalachian State University 

 
Chairperson:  Dr. Jeffrey Ramsdell 

 

Computational Fluid Dynamics (CFD), as an architectural tool, has the 

potential to model the air flow and convective heat transfer that predominates the 

performance of passive solar building techniques to meet the comfort needs of 

building occupants; however, there is very little research on the implementation or 

validation of CFD software for this purpose. This study attempts to validate a verified 

CFD software program, Autodesk CFD, for the purpose of modeling both unvented 

and vented Trombe walls. Temperature and air velocity data from two past 

experimental studies were compared to model results. The results indicate that CFD 

may be used to simulate and visualize buoyancy driven air flow and mass wall heat 

transfer closely resembling actual Trombe walls. This study also shows that accuracy 

and computational time of simulations are largely dependent on user defined input 

such as time step size. Further research into validation and creation of optimization 

workflow protocols using Autodesk CFD for Trombe wall design is recommended.    
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Chapter One: Introduction 

As recently as 2014, approximately 35% of residential and commercial building 

energy use in the United States was used for mechanical heating, ventilation, and air 

conditioning (HVAC) systems (Energy Information Administration, 2014). The climate, 

geometry, materials, and occupant use of the building determines the amount of mechanical 

assistance needed to meet the comfort needs. Mechanical HVAC systems require a source of 

energy, electricity or burning fuel, to provide thermal comfort and acceptable indoor air 

quality. Passive solar building techniques effectively collect, store, and distribute solar 

energy to provide thermal comfort without the need of electricity or burning fuel. Sunspaces, 

direct gain walls, and Trombe walls are all passive solar techniques. These replace standard 

insulated walls and are composed of different arrangements of glazing and materials of high 

thermal storage capacity. The use of passive solar building techniques reduces the thermal 

load on mechanical HVAC systems which decreases energy consumption and demand 

(Balcomb, 1992).  

The Trombe wall system is a passive solar building technique that uses a mass wall, 

glazing, vents, and dampers in different configurations to aid in heating or cooling the home. 

Figure 1 shows a diagram of both heating and cooling Trombe wall configurations. In the 

summer, the Trombe wall acts as a solar chimney by drawing air from the building, through 

the buoyancy effect, and producing a natural breeze through the home. In the winter, the 

dampers of the Trombe wall can be adjusted to create warm convective currents within the 

cavity wall. Those currents are then distributed throughout the building along with radiated 

heat from the mass wall. This study will focus on Trombe walls configured for winter 

heating. The incorporation of a Trombe wall has been shown to reduce overall energy usage 
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in single-family residential buildings by 30% (Saadatian, Sopian, Lim, Asim, & Sulaiman, 

2012, p. 6341). 

 

Figure 1. Schematic diagram of classic Trombe wall (a) winter heating, (b) summer cooling 

(Gan, 1998, p. 37). 

A variety of methods has been used in an attempt to optimize Trombe wall design. 

Gan (1998) performed a parametric study using two-dimensional air flow measurements for 

different wall heights, glazing types, and wall insulation to optimize the cooling effects of a 

Trombe wall. Simplified sets of the Navier-Stokes equation have been used to calculate the 

heat transfer, fluid flow, and fluid temperature profile within the cavity wall (Zamora & 

Kaiser, 2009). Although these studies have assisted in producing a range of design criteria for 

certain aspects of Trombe walls, there are many assumptions used to reduce the complexity 

of the simultaneous partial derivative flow equations needed to analyze such a complex 

system. This makes numerical analysis difficult to use as a design tool unless it is housed in a 

more capable computational package. Similarly, experimental works are limited by time and 



3 

 

cost in the amount of variables that are able to be tested. The use of a simulation software 

that incorporates verified Computational Fluid Dynamics (CFD) code would allow for 

multiple parameters to be tested and optimized in various climates if it can be validated with 

existing experimental data.  Validation involves the comparison of experimental data to the 

results of a simulated model; validation and verification of simulation software for a 

particular use creates confidence in the software to be used as a design tool. 

 

Statement of the Problem  

Simulation of a digital prototype can be useful in the design and optimization of any 

product. The simulation of a building may be used to review and reduce energy use, identify 

costly conflict before construction, and optimize user comfort. Energy use as an optimization 

metric does not pertain to the design of a completely passive building. When designing 

buildings that incorporate both active and passive systems, energy use is still an important 

metric; however, the level of thermal comfort provided by the passive system must be known 

to know how much energy is offset from the active system. The comfort performance of a 

passive heating or cooling system cannot adequately be quantified in a building energy 

modeling program that does not account for air flow and convective heat transfer within the 

air space of the building.  

Building Energy Simulation (BES) tools possess many shortcomings when it comes to 

modeling passive solar building systems. One of the primary drawbacks of BES is its 

inaccuracy when calculating heat transfer by convective currents (Haupt, Kunz, Paltier, & 

Dreyer, 2010; Ellis, 2003). Table 1 shows the difference between BES and CFD software as 

far as capabilities in building simulation. 
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Table 1 

Comparison of BES and CFD Simulation (AbdElrahman & ElDabosy, 2013, p. 5) 

 

CFD allows designers to simulate and visualize the distribution of temperature, air 

velocity, the concentration of water vapor and contaminants, thereby allowing optimization 

of occupant comfort and health in the building. Building ventilation performance and indoor 

air quality studies have validated CFD code to experimental data with good results (Chen, 

2009). A combination of grid generating (GRIDGEN), heat transfer (RadTherm), and 

computational fluid dynamics software (nPhase) were used to model a Trombe wall in the 

design phase of a commercial building (Sami & Gassman, 2006). The building was not 

monitored to validate the results of the combined software. Validation studies and studies 

that test workflow processes using various CFD tools will help to further the use of CFD in 

both Trombe wall specific, and overall building design.  

 

Purpose of the Study 

There are three methods to approach a heat transfer or fluid dynamic problem: 

experimentally, theoretically, or computationally. The Trombe wall is an excellent 

combination of both a fluid dynamic and heat transfer problem that has been extensively 
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studied using the former two approaches. From these studies, multiple design guidelines have 

been created. Unfortunately, experimental studies are building and climate dependent while 

theoretical studies are restricted to simple geometry and physics. This limits the effectiveness 

and accuracy of the current design guidelines. The goal of this research is to validate 

Autodesk CFD for use with Trombe walls by modeling and comparing the results to past 

experimental test modules. An Autodesk product was chosen due to the interconnectivity of 

CAD, BIM, and BES tools that are frequently used in architecture and engineering firms. 

Designs created in Autodesk Revit are transferable to both the CFD tool and the BES tool, 

Ecotect. 

The aim of this study is to simulate existing Trombe wall test cells described in 

(Casperson & Hocevar, 1979; McFarland, 1982) to provide confidence in using Autodesk 

CFD for the custom design of Trombe walls. An anticipated result of this study is a workflow 

process for creating and testing Trombe walls, and similar thermal storage wall systems, 

using CFD software. This process will involve three main components: (1) the creation of a 

model workflow, (2) an analysis method for simulation outputs, and (3) a sensitivity analysis 

of time steps and mesh sizes. An additional purpose of this study is to advance the 

incorporation of CFD simulation in building design and of Trombe walls in passive solar 

design. 

 

Research Questions 

These questions are designed to analyze the chosen software, Autodesk CFD 2016, in 

its ability to model the complex air flow and heat patterns within a Trombe wall test cell.  
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1. Does a buoyant driven air flow pattern exist in the visualization of the vented Trombe 

wall simulation results? 

2. How similar are simulated outputs of temperature and air velocity to measured 

outputs of past experimental studies? Do these outputs change as expected with 

differences in Trombe wall configuration?  

3. How does variance in the numerical scheme of the simulation affect accuracy? 

 

Limitations of the Study  

The use of computer simulation in any research introduces a risk of user error due to 

lack of background knowledge or due to incomplete input information. A general knowledge 

of fluid dynamics, heat transfer, and numerical methods is needed to make informed inputs 

into the simulation software. This limitation may be counterbalanced through the use of 

verification methods such as comparison of results to numerical analyses or to actual model 

results. Incorrect settings of boundary conditions, grid resolutions, numeric techniques, and 

interior heat sources can attribute to differences from measured data. ASHRAE’s procedure 

for verification, validation, and reporting of indoor environment CFD analyses provides a 

guideline for these settings (Chen & Srebric, 2002). 

 Another limitation of the study is the availability and accuracy of experimental data. 

Some climate conditions and material properties were not reported in these studies. It must 

also be assumed that all the reported sensor data is correct and accurate. Unknown material 

properties can be estimated based on similar materials. Unknown conditions like infiltration 

will not be accounted for in the study but may contribute to result uncertainty. The reported 

error range of the sensors will be considered in the analysis of model data accuracy. There 
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have not been many recent experimental studies regarding Trombe walls so this validation 

will need to rely on the accuracy of data collected from the few past experimental and 

numerical studies. 

 

Significance of the Study 

  The use of computer simulation is used in optimizing and testing building designs 

before construction to reduce risk and construction cost. The use of computer simulation tools 

also enables the testing of innovate design techniques such as the incorporation of new 

materials and geometries that would be too costly to test experimentally. Computational fluid 

dynamics is theoretically more capable of quantifying and designing a passive system than 

building energy simulating software. This study will help reveal the capabilities of Autodesk 

CFD for use in simulating Trombe walls. In attempting to validate the software for this purpose 

a workflow process will be created and tested. This workflow process may be referenced by 

those wishing to use CFD for the design of similar building devices.  

The simulation tool, Autodesk CFD 2016, will be analyzed for its ability to 

qualitatively depict air flow patterns and quantitatively predict temperature and air velocity at 

certain points within the interior. If there is an agreement to the reference experimental 

studies, then this work will serve as the foundation of a design optimization procedure.  If 

there is little agreement due to uncertainty the researcher suggests further research using 

experimental studies designed for the purpose of validation.  
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Chapter Two: Review of Literature and Relevant Research 

The History and Function of Trombe Walls 

A Trombe wall system is a type of thermal mass storage wall that incorporates 

exterior glazing, vents, and dampers in order to passively heat, cool, and ventilate an interior 

space, depending on configuration (Hordeski, 2004). The Trombe wall shares a name with 

one of the French inventors who patented and popularized the architectural features, Felix 

Trombe and Jacques Michel (1972). Figure 1 shows the original configuration of a Trombe 

wall for both heating and cooling. During the winter months, air enters the cavity from a low 

vent. The air is heated up by the wall and rises through the cavity and into the room through 

the buoyancy or stack effect. During warm summer months, the Trombe wall can act 

similarly to a solar chimney by closing the low glazing vent and opening the high vent (Gan, 

1998). Instead of utilizing the buoyancy effect within the cavity to push heated air into the 

living space the summer configuration will pull air from across the room, through the cavity, 

and out an external vent, which will create cooling ventilation and remove warm air. 

Experimental and numerical studies have been done to generate a set of guidelines for 

Trombe wall design. Some general Trombe wall design guidelines include a suggested mass 

wall thickness of between 10-16 inches and a cavity of between 1 and 2.5 inches (Wilson, 

1979). The mass wall of the Trombe wall system is most commonly a dark colored and 

south-facing (Northern Hemisphere) concrete, masonry, or earthen wall. The mass wall 

portion of the system serves to collect and store solar energy during the day and release this 

heat energy when needed. While these guidelines provide a general framework for a 

workable Trombe wall they are neither climate specific nor specific to the needs of the 
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individual building. A validated simulation technique would enable these guidelines to be 

tested and optimized for specific climates and building uses. 

 

Review of Research on Trombe Walls 

Trombe walls incorporate various accessories including vents, dampers, and fans to 

achieve efficiency given different exterior conditions. Studies of the optimal placement, 

dimensions, and operations of these accessories are the predominant experiments done on 

optimization of Trombe wall system (Saadatian et al., 2012; Kim & Seo, 2012; Zamora & 

Kaiser, 2009). A study looking specifically at thermo-circulation vents, one vent at the top 

and one at the bottom of the mass wall, showed that the closing of vents at night and when 

the internal temperature exceeded 24° C would avoid creating a reverse flow or overheating, 

respectively (Saadatian et al., 2012, p. 6346). Additionally, studies have shown the addition 

of external vents as well as the size and distance between mass wall vents have a significant 

effect on air circulation (Kim & Seo, 2012). Kim & Seo performed an experimental study 

mixed with 2-D CFD simulation to measure air flows based on vent spacing. An optimal 

distance that minimized heat loss without compromising air flow was found around 1.5 

meters. This configuration did not factor in differing vent opening areas or varying air gap 

thicknesses. A parametric study of Trombe walls for passive cooling using turbulence models 

and a review of past experimental studies showed ventilation rates increase with air gap 

thickness and when using double-paned glazing instead of single-paned (Gan, 1998). This 

study also suggested that the interior surface of the mass wall be insulated to prevent 

overheating due to radiation. 
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A collection of literature on Trombe walls done by Saadation et al. (2012) shows that 

the mass wall’s thickness, the air gap thickness, and vent sizing and spacing have the most 

drastic effect on Trombe walls. The optimal thickness of the mass wall is dependent on the 

thermal capacity of the materials chosen, on climate, and on the shape and function of the 

connected livable space. The mass wall of a classic Trombe wall is composed of materials of 

high heat storage capacity including bricks, concrete, stone, or adobe. Some modern Trombe 

walls are using lighter water walls and phase change materials in place of masonry. The 

experimental test cells referenced in this study used concrete mass walls. Concrete has a 

thermal lag of 120 to 150 minutes for every four inches of thickness. Too thin of a mass wall 

will result in excessive interior temperature swings while too thick of a mass wall will be 

costly to build and will take too long to radiate heat into the interior after peak exposure, 

creating occupant discomfort. The optimal suggested mass wall thickness proposed is 

between 30 and 40 cm (11.8 to 15.7 inches).   

Zamora and Kaiser (2009) used two-dimensional laminar and turbulent numerical 

models, along with experimental models, for different geometric configurations of the 

Trombe wall. The Nusselt number and the calculated mass flow rate were used as indications 

of effectiveness. The total energy flow can be found by multiplying the Nusselt number by 

the mass flow rate. This study concluded that the ratio of air gap thickness to wall height was 

far more significant than the ratio of vent size or wall thickness to wall height.  A further 

look into the numerical methods involved in analyzing the natural convective currents and 

heat transfer within a Trombe wall will be discussed in a later section.  
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Experimental Studies of Vented and Unvented Trombe Walls 

Because the use of CFD in building system design has only recently gained a foothold 

through indoor building environment studies, there are very few precedents upon which to 

base a validation method. Validation involves demonstrating the ability of a user and a CFD 

code to accurately simulate a representative environment. For most computer simulation 

software the best way to legitimize simulated values is to compare with actual monitored 

values of the exact same configuration as the model (Chen & Srebric, 2002). In order for an 

experimental study to qualify as a source of comparison, the space must be monitored, 

controlled, and be free of confounding variables such as unmeasured mechanical HVAC or 

occupant use.  

Two different experimental studies were chosen to model in Autodesk CFD based on 

configuration and available data. The experimental models used are 3 unvented Trombe wall 

test cells in Los Alamos, NM (McFarland, 1982) and 3 configurations of a vented Trombe 

wall in Idaho Springs, CO (Casperson & Hocevar, 1979). Both of the selected experimental 

studies were performed in the late 1970’s and early 1980’s. Additional Trombe wall 

experimental studies are included in this literature review but were not selected due to either 

a lack of accessible data or an overabundance of confounding variables.  

The most notable set of passive system test cells is located at the Los Alamos 

National Laboratory (LANL) in New Mexico (Ellis, 2003). This study was composed of 14 

test cells with various passive heating techniques, four of which incorporate a type of 

unvented Trombe wall. These test cells have been monitored since 1980 by an increasingly 

complex data acquisition system. Many studies involving Trombe walls have used the Los 

Alamos test cells as a means of calibration and verification of results (Gan, 1998; Ellis, 
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2003). Due to limited reported cell data and local climate data, only eight consecutive days in 

the winter of 1982 were used for simulating.  

 Vented systems would be more indicative of the CFD capabilities to simulate 

buoyancy driven air flow to the interior space. The NREL Wind Site in Colorado has a 44 ft2 

vented Trombe wall on the southern wall with a single-paned low-iron glazing over a 4-inch 

mass wall (Ault, Torcellini, & Van Geet, 2003). The visitor center at Zion National Park in 

Utah is another vented Trombe wall that has been reported on and measured (Torcellini & 

Pless, 2004). This design is composed of a 6-foot-high Trombe wall with a total area of 740 

ft2 on the southern wall. The wall is composed of 8 inches of grout-filled concrete masonry 

units and a single piece of high transmittance patterned glass with a 2-inch air gap between. 

A high-set window within the mass wall is used as the inlet vent.  This facility has been 

monitored for interior temperature and humidity for two full years. The large square footage 

and frequent occupancy of the visitor center would make it difficult to attribute the variations 

in temperature and humidity to the Trombe wall system. 

 The vented experimental study was selected based on the availability of reported data 

and simplicity of geometry. This study was performed by Richard L. Casperson and Carl J. 

Hocevar of Energy Engineering Group, Inc. in Idaho Springs, Colorado as part of a U.S. 

Department of Energy contract. One test facility with three different configurable air gap 

thickness was tested. Temperature and air velocity were tested at 15-minute intervals 

throughout the air gap. While the test cell was monitored from January to April of 1979 only 

data from 10 selected clear sky days were reported (Casperson & Hocevar, 1979).  Both 

selected studies only had available data from winter conditions so the validation could only 

be performed for heating capabilities.  
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Numerical Analyses of Trombe Walls  

Numerical analyses have been used in an attempt to optimize the design of Trombe 

walls (Zamora & Kaiser, 2009). The governing equations (Navier-Stokes Equation is shown 

below) dictating the convective heat transfer and air flow within a system are derived from 

the fundamental laws of mass, energy, and momentum conservation.              

Equation 1, Simplified Navier-Stokes Equation (Chen & Srebric, 2002, p. 2). 

     
𝜕

𝜕𝑡
(𝜌𝜙) +

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜙) =

𝜕

𝜕𝑥𝑗
(𝛤𝜙

𝜕𝜙

𝜕𝑥𝑗
) + 𝑆𝜙   

Transient + Convection = Diffusion + Source          

Each section of the equation represents a change over time of air velocity, 

temperature, or species concentration in a three-dimensional space. These coupled partial 

derivations can be solved algebraically if the geometry is divided into smaller control 

elements or volumes. The finer the volume discretization the more computationally intensive. 

Computer-based numerical procedures are the only practical means of generating complete 

solutions to these equations. CFD simulations utilize the governing equations to simulate the 

interaction of fluid flow with surfaces of finite volumes or elements defined by boundary 

conditions.  

Simplified sets of the Navier-Stokes model can be used if assumptions are made for 

incompressible and inviscid flows. Manz and Frank (2005) looked at airflow patterns within 

a double-skinned façade and found turbulent flow (high Reynolds number) can be assumed 

for a majority of cases. Based on this assumption the k-ε turbulence model for recirculating 

flows can be used to some degree of confidence as shown by Zamora and Kaiser (2009). 

From an assumed high Reynolds and Rayleigh number the ratio of convective to conductive 

heat transfer can be assumed to be high as well, which enables an approximation of the 
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Nusselt number by dividing the local heat transfer coefficient (h) and the height of the wall 

(H) by the thermal conductivity of air (k). These assumptions can be verified by a CFD 

simulation, or by comparison to experimental results of a built system. These numerical 

studies also give an idea of what turbulence model to select in the CFD tool. Autodesk CFD 

gives the option of using k-epsilon, renormalized group (RNG), or low Reynolds k-epsilon.  

 

The Use of Computational Fluid Dynamics in Building Science 

CFD is used to model the behavior of fluids. For building science purposes this will 

mainly relate to the movement and temperature of air within a space (Zhai, 2006). CFD 

software uses the general equations of energy, mass, and momentum conservation to 

calculate the transfer of mass and heat between discretized volumes. The air movement, air 

temperature, and radiant temperature of the boundaries of these volumes are set to a starting 

condition. These boundary conditions are based on local climate or material data. Once the 

boundary conditions are set the CFD software will then simulate the flow of air and exchange 

of heat from the boundary surfaces to the adjacent volumes then to each volumes 

surrounding.  

 A CFD code solves the heat flow and transfer models by dividing the continuous 

space into finite elements or volumes (Chen & Srebric, 2002). The space can be divided into 

structured or unstructured numerical grids. Structured mesh grids are based on Cartesian 

coordinates and are for uncomplicated rectangular volumes. Unstructured meshes are body-

fitted and better when complicated or curved surfaces exist. Unstructured meshes more 

accurately simulate heat transfer between the human body and the surrounding air. The 

experimental Trombe walls referenced in this study are not occupied, nor do they contain any 
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curved geometry. For the purpose of comfort performance measurement and custom Trombe 

wall design in further research; however, an unstructured mesh would be necessary. For this 

reason, CFD software that is able to develop body-fitted and curved surface mesh is 

preferable. 

Where CFD is being used to predict user comfort, it is important that both air 

temperature and radiant temperature are considered. Typically, CFD itself only models air 

temperature and fluid velocity. The Autodesk CFD tool is able to include radiant influences 

on the temperatures that will be felt and produced by occupants. In Autodesk CFD, a thermal 

mannequin can be set up to mimic the metabolic and radiant heat generated by a person while 

also serving as a monitor point for comfort conditions.  

Review of relevant computational fluid dynamic studies. 

The application of CFD simulation has been validated with numerical models of 

indoor air quality, mechanical ventilation, and stratified ventilation within buildings (Chen, 

2009). The integration of CFD simulation into building design optimization has been used in 

projects requiring a high degree of precision in ventilation systems such as in hospitals and 

server rooms or in high-rise site planning to reduce high-speed wind between buildings 

(Zhai, 2006; Chen, 2009). There is a variety of software used and a variety of methods. From 

the following articles, it can be shown that CFD is effective in simulating air flow and heat 

transfer in buildings.   

CFD coupled with building energy simulation has been used to design natural 

ventilation systems and double-skinned facades in office buildings (Abdelrahman & 

ElDabosy, 2013; Manz & Frank, 2005). Two-dimensional CFD along with experimental 

analysis was used to show the air flow distribution in a room with a chilled ceiling (Catalina, 
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Virgone, & Kuzink, 2009).  FloVent, a three-dimensional CFD that specializes in HVAC 

applications, was used to analyze cooling towers in four different climate conditions (Sami, 

2003). There have been CFD studies that analyze pre-existing Trombe walls using a 

combination of software to create the mesh and to run the calculations using Radtherm with 

nPhase (Sami & Gassman, 2006). This study, in particular, was conducted to display the 

temperature and air flow gradient along a Trombe wall in Asheville, NC throughout the year. 

Comparing this with actual energy and interior temperature data it was shown that the 

Trombe wall was potentially saving the Blue Ridge Visitor Center 128.5 million BTU/year or 

35% of the building’s space heating load (p. 11). This study showed that Trombe walls can 

be analyzed using methods that are similar to a full CFD software package. There were no 

reported studies, to the researcher’s knowledge, that used Autodesk CFD to model a thermal 

storage mass wall or compared the results of a Trombe wall modeled using a CFD tool to 

experimental data. 

Procedure for validation of CFD analyses. 

Validation of a simulation program involves a demonstration of the user’s ability to 

accurately replicate a phenomenon for which reliable data exists. The procedure and criteria 

necessary for validating CFD analyses to indoor environmental applications were 

investigated and reported on by ASHRAE members, Chen and Sreberic (2002). The level of 

accuracy reported in validation to a specific application, such as a pre-existing Trombe wall, 

determines the level of confidence in using the program for future design purposes.  The 

procedure suggested involves matching the geometry and initial conditions as close as 

possible to the experimental study, running an isothermal flow analysis, and then adding heat 

transfer. These suggestions are considered in the methodology of this research study. 
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Chapter Three: Methodology 

This study focuses on the capability of Autodesk’s CFD tool and the user to simulate 

the complex heat transfer and convective flow patterns within Trombe walls by comparing 

modeled results to experimental study results. The experimental studies chosen include three 

unvented test cells from the Los Alamos Passive Solar study (McFarland, 1982) and three 

vented test cell configurations from Idaho Springs, Colorado (Casperson & Hocevar, 1979). 

The Las Alamos National Lab (LANL) test cells were monitored hourly, primarily during 

winter months, between 1979 and 1982. The sensors installed within the LANL cells 

monitored for temperature at various locations within the cell. Accessibility to both 

monitored cell data and weather data within these three years narrows the time frame used in 

this study to between February 14 and February 22, 1982. Congruent data spanning multiple 

days will help gauge the ability of the software to predict the diurnal patterns of heat storage 

expected from a system that incorporates a thermal mass.  

 The Energy Engineering Group (EEG) at Golden, Colorado test cell configurations 

were tested in the winter months, January and February, in 1979. Data was reported for two 

clear sky days for two, four, and six-inch air gaps. The EEG cell was monitored for 

temperature of the mass wall and glazing as well as the velocity of air within the air gap.  

 The steps in the workflow of Autodesk’s CFD tool include the following in 

chronological order; create geometry, define materials, define boundary conditions and initial 

environment, create a mesh, set solving parameters, then solve and analyze results. All 

simulations were run on an ASUS K501 laptop with a Dual-Core Pentium CPU @ 2.30 GHz 

processor with an installed memory (RAM) of 4GB.  
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Creating Geometry 

The geometry was created using Autodesk Revit 2015 and then exported as a 

Standard ACIS Text (SAT) file to create a design study in Autodesk CFD 2016. For the 

purpose of properly simulating heat transfer between elements of the construction, all walls, 

roofs, and floors were split into parts by material type before exporting. This would also 

ensure that material properties were properly accounted for. While both studies had wood 

stud and joist systems these components were not accounted for separately in either model. 

The conduction through the insulated portion of the wall, roof, and floor system was not the 

primary focus of this study and could be represented by an averaged reported conductivity.  

Complex geometry such as door and window frames were removed from the model 

and accounted for in material properties or substituted with simplified geometry. An overly 

detailed model would require more mesh elements which would result in a longer 

computational time.  It is also important to make sure there are no overlapping geometry or 

small gaps prior to exporting. Once in the CFD program, the mesh diagnostic tool was used 

to identify possible edges and surfaces that could cause errors. The geometry tools in 

Autodesk CFD were used to fill voids with volumes and to create an external volume around 

the model. Both these volumes would later be defined as air.  

The dimensions of the geometry used were based on descriptions and figures from the 

experimental study reports (McFarland, 1982; Casperson & Hocevar, 1979). Any dimensions 

that were not reported in the original report were assumed based on derived research that has 

used the Los Alamos test cells for numerical and building energy modeling validation (Ellis, 

2003). 
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Los Alamos test cells. 

Los Alamos National Lab’s passive solar study consisted of 14 paired test cells. The 

layout of the 14 test cells as well as a description of the passive heating techniques can be 

seen in Figure 2. Cells 1, 2, and 12 include Trombe walls and are investigated in this study. 

Cell 11 is included in the study to account for the changing conditions of the interior wall of 

cell 12. Cell 13 is included to replicate the shading of cell 12. All test cells are facing true 

south within 0.5° (McFarland, 1982). The paired cells are spaced approximately 1.4 meters 

apart or 54 inches based on photographic scaling (Ellis, 2003). Figure 3 shows the geometry 

of a standard test cell from this study.  

 

Figure 2. Los Alamos test cell layout, modeled cells highlighted (McFarland, 1982, p. 7) 
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Figure 3. Los Alamos Passive Solar study test cell geometry (Ellis, 2003, p. 36). 

 

The interior dimensions of each cell are approximately 120 in. high, 86 in. deep, and 

62 in. wide (McFarland, 1982). There is a 2 ft. by 9 ft. access door to each cell made of 4 in. 

Styrofoam and 5/8 in. plywood on the exterior. The exterior walls are composed of 1 in. 

Styrofoam on the interior, 3 ½ in. wood studs with fiberglass batt insulation, and 5/8 

plywood on the exterior. The interior walls are 3 ½ in. wood studs with fiberglass batt 

insulation surrounded by 1 in. Styrofoam. The mass walls are made of standard solid 

concrete masonry unit blocks measuring 5-5/8 in. by 7-5/8 in. by 15 5/8 in and extend the 

height of the interior. The glazing is 45 in. by 75. and is composed of 2 panes of 3/16 in. 

glass with ½ in. air gap. An air gap of 3 3/8 inch was used, creating a distance of 4 ¼ 
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between the mass wall and the exterior of the glazing. Figures 4 and 5 show the created cell 

geometry and layout in relation to one another.    

 

Figure 4. Plan view of unvented test cells modeled in Revit. 

 

Figure 5. South Elevation (right) and East Elevation (left) of unvented test cells. 

 

Given the distance between neighboring test cells, shading must be accounted for in 

the model. Shading is also provided by the 14 in. roof overhang of the north and south side.  

Figure 6 is a 3D view of the modeled test cell with noon shading on the first day of acquired 
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measured data. The environment beyond the test cells may contribute to the shading but is 

not mentioned in the referenced reports. 

 

Figure 6. 3D View with Revit solar shade analysis. 

  

The ceiling of the cells was constructed of 2 x 6 in. wood joists with two layers of 3 

½ in. batt insulation with 1/16 in. corrugated metal interior. The roof is 10 in. above the 

ceiling and is constructed of 90 lb. rolled roofing on 30 lb. felt on 5/8 in. plywood on 2 x 4 

in. rafters. The floor is 2 x 6 joists with two layers of batt insulation surrounded by ¼ in. 

plywood facing on the interior and 5/8 in. plywood on the exterior. Risers were placed on the 

underside of each test cell to reduce conduction from the ground. The dimensions of these 

risers were not given but were assumed to be 4 x 4 wood pieces.   

 Other geometry elements to consider in the Los Alamos study are those of interior 

lighting and fans. The interior temperature of the Los Alamos cells was regulated using the 

auxiliary heat of a lightbulb in cells 1 and 2 of the modeled cells. Small centrifugal blowers 
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were used to regulate infiltration rates of 3 nominal air changes per hour. The specifics on the 

power output of the auxiliary heat and flow rate of the fan are specified later in the 

methodology. The fan and lighting geometry were too complex for the purpose of this study; 

simplified components were substituted. A 4 in. by 4 in. by 9 in. rectangle hanging from the 

center of the ceiling of cells 1, 2, and 11 were created to represent the light fixture. These 

same cells also included an 8 in. by 15 in. volume bridging between the interior and exterior 

wall surfaces to represent the installed centrifugal fan. The fan volume was extruded 4 inches 

from the surrounding exterior walls to allow the incoming air flow to stabilize before 

entering the interior space. The fan component was centered above the door. Cell 12 had 

neither auxiliary heating by lighting or fan forced ventilation no substitute geometry was 

required.   

Energy Engineering Group test cell. 

The vented experimental study, performed by Energy Engineering Group in Golden, 

Colorado, was composed of one configurable test cell (Casperson & Hocevar, 1979). The 

report did not include mention of any adjacent structures that would cast shade on the cell. 

The gap between the glazing and the mass wall was tested at 2 inches, 4 inches, and 6 inches 

from the masonry wall. Figure 7 shows the geometry of the test cell from the report. Figure 8 

shows the geometry created in Revit.   
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Figure 7. EEG vented study test cell geometry (Casperson & Hocevar, 1979 pp. 18-19). 

 

The exterior walls are composed of ½ in. gypsum wallboard on the interior, 3 ½ in. 

wood studs, and ½ in. plywood on the exterior. The interior walls are uninsulated 3 ½ in. 

wood studs surrounded by ½ in. gypsum wallboard. The roof was constructed of 2 x 12 in. 

wood joists with a 3-ply asphalt built-up roof, the interior was ½ in gypsum. The floor is 

composed of 2 x 10 joists with ¾ plywood and linoleum covering. Tightly packed cellulose 

insulation was blown in under pressure for the exterior walls, roof, and floor system. Door 

were ¾ in. hollow core wood. 
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The mass wall was made of solid concrete masonry unit blocks measuring 7 5/8 in. 

high, 11 9/16 in. deep, and 15 9/16 in. wide. A 4 in. high gap extending the full 10 ft. length 

of the masonry wall between the top of the wall and the ceiling served as the outlet duct. A 

similarly sized gap between the bottom of the masonry wall and the floor served as the inlet 

gap. Steel pins attached to plates spanned the 4-inch ducts to support the mass wall and roof. 

The pins were determined to be of a negligible width to disrupt the inlet and outlet air flow so 

were not included in the geometry of the model. The glazing was fixed in a movable frame to 

adjust the gap from the mass wall between 2 inches, 4 inches, and 6 inches. The glazing was 

composed of two Kalwall panels separated by 1 ½ inch interior air film.  

Additional geometry. 

For both models, a ground volume was created in Revit to account for the heat 

transfer through the floor and the reflected solar radiation. The ground volume was three feet 

thick and had a diameter of 100 feet for both models. A ground volume of at least five times 

the width of the test cell was suggested (Solar Heating, 2016).  Figure 9 shows the three-

dimensional view of the vented model with the ground volume. The ground volume created 

for the Los Alamos cells can be seen in Figure 10.  
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Figure 8. Vented created geometry plan view (top), east elevation (bottom left), and south 

wall elevation (bottom right) in Revit with dimensions. 
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Figure 9. Three-dimensional view of vented model with ground volume. 

 

An external volume of air around the structure was created to distance the source of 

radiation from the structure surface, allowing for shading to be accounted for. The external 

air volume must be large enough to allow both fully developed air velocity profiles and 

transfer of heat through convection. The width of the exterior air volume was extended the 

width of the previously defined ground volume, 100 feet. Autodesk suggested a height of at 

least three times the height of the test cell (Solar Heating, 2016). A height of 50 feet for both 

models was used. A domed environment volume, as seen in Figure 10, was chosen so that 

only one surface needed to be selected when defining environmental boundary conditions.  
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Figure 10. Domed air environment and ground volume surrounding unvented model in 

Autodesk CFD. 

 

Defining Materials 

Solid materials were defined by conductivity, density, specific heat, emissivity, 

transmissivity, and roughness. These properties, if not stated in the experimental study report, 

were estimated based on similar material properties from derived research (Ellis, 2003) or 

from the Autodesk material database. The properties of the glazing and mass wall require the 

most exactness. The properties of the mass wall determine how much heat is stored and how 

long it takes the energy to reach the interior. The transmissivity of the glazing determines 
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how much solar radiative energy reaches the air gap and mass wall surface. The properties of 

all the construction materials are listed in Tables 2 and 3. The dry clay soil type in the 

Autodesk material database was chosen for both models as this best represented the 

predominantly arid soil type of the western United States. The soil properties are included in 

both construction material tables. 

 

κ  Thermal Conductivity (W/m-K) 

ρ Density (kg/m3) 

cp Specific Heat (J/kg-K) 

ɛ Thermal Emissivity 

τ  Solar Transmissivity 

 

Table 2 

Material Properties for Unvented Study (LANL) 

Material κ ρ cp ɛ τ 

Black Painted Concrete  1.385 2189 510 0.9  

Corrugated Metal 45.3 7833 502 0.2  

Fiberglass Batt Insulation w/ studs 0.0459 84.8 963 0.9  

LANL Glazing (Thermopane) 0.9 2700 840  0.69 

Gypsum Wall Board 0.17 800 840 0.8  

Plywood Sheathing 0.115 545 1213 0.9  

Asphalt/Ply Sheet Roofing  0.19 1121 1674 0.9  

Selective Surface  392.6 8906 370 0.07  

Styrofoam 0.0305 28.8 1213 0.8  

Soil (dry clay) 0.25 1600 890 0.92  
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Table 3 

 Material Properties for Vented Study (EEG) 

Material κ ρ cp ɛ τ 

CMU Mass Wall (lightweight aggregate) 1.100 1432 879 0.85  

CMU Mass Wall (heavyweight aggregate) 1.100 2306 837 0.85  

Blown in Cellulose Insulation w/ studs 0.035 60 1944 .85  

Laminate Flooring 0.260 432.5 837 0.6  

Sunlite Premium II Kalwall Glazing 0.78 2700 840  0.88 

Gypsum Wall Board 0.17 800 840 0.5  

Plywood Sheathing 0.115 545 1213 0.9  

Asphalt/Ply Sheet Roofing  0.19 1121 1674 0.9  

Wood Doors Hollow-Core 0.12 510 1380 0.8  

Soil (dry clay) 0.25 1600 890 0.92  

 

Two concrete masonry unit types, lightweight and heavyweight aggregate, were 

simulated for the vented study model. The heavyweight properties were modeled first and 

resulted in a larger thermal lag than was indicated in the actual measurements. Properties of a 

lighter density concrete were input to test the ability of the simulation tool to account for 

varying material properties in the calculation of conductive heat transfer through the mass 

wall. The properties of the heavyweight concrete were from the Autodesk database while the 

properties of the lightweight concrete were the reported values (Casperson & Hocevar, 

1979). 

Air was the only fluid material used in this study and was defined by density, 

viscosity, conductivity, specific heat, and emissivity. The Autodesk default air properties 

were used with an adjusted absolute pressure based on the elevation of the site. For the Los 

Alamos unvented study, the environment pressure was set to 23 in. Hg at an elevation of 

7,080 feet. The vented Energy Engineering Group environment pressure was set to 29.65 in. 

Hg at an elevation of 7,530 feet. To allow for convective heat transfer the air of the interior 
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and the exterior were set to variable. A variable material changes property with a change in 

environment. An equation of state is used to correlate the density of air to changing 

environment temperature and pressure. A decrease in air density with increasing temperature 

is what drives the buoyancy effect that creates the convective currents within the air gap of a 

Trombe wall.  

The emissivity property of the air could also be adjusted over time or in relation to 

temperature. The emissivity property in Autodesk CFD relates directly to the reflectivity of 

the solid surface or fluid (Solar Heating, 2016). The sum of reflectivity and emissivity of the 

surrounding air volume total to one. A high emissivity value for the exterior air volume 

means little to no solar radiation is reflected before reaching the test cell model surfaces. A 

lower emissivity could represent a high reflectivity due to intermittent cloud cover. The 

emissivity of a clouded day, see 2/14 and 2/18 of Figure 11, was based on the percentage 

difference to solar insolation measured on the proceeding clear sky day. The unvented 

simulation with varying emissivity values was not able to run successfully without diverging. 

Only clear sky days were reported for the vented study. Only two days of the eight days 

reported for the unvented study indicated clouded conditions. Therefore, a constant 

emissivity rate of 0.8 was used for the exterior air volume of both studies.   
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Figure 11. Measured solar insolation from 2/14 to 2/22/1982 at Los Alamos National Labs. 

Measurements were taken with a pyranometer at 90° and 0° tilt. 

 

Defining Boundary Conditions and Initial Conditions   

Boundary conditions were created based on local weather to simulate both solar 

radiation and ambient air temperature. Transient (time-varying) analysis was used to take 

into effect the changing exterior climate on the interior air volumes. Conditions such as film 

coefficients, total heat generation, and flow rate were considered when accounting for wind 

flow, auxiliary heat, and fans respectively. Due to solver errors and divergence some of these 

considered conditions, such as auxiliary heat and fans, were not able to be included in the 

final model simulations. Two different methods of initializing the conditions of the test cell 

materials were used depending on available data from the experimental studies.     

Location and weather. 

The first study used for validation is located at Los Alamos National Labs in Los 

Alamos, New Mexico, at 35° 48’ N Latitude and 106° 18’W longitude, at an altitude of 

7080ft. The air pressure is estimated to be 23 in. Hg at this altitude. These test cells were 

monitored hourly, mainly in winters, between 1979 and 1982. Accessibility to both 
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monitored cell data and weather data within these three years narrows the time frame used in 

this study to between February 14 and February 22, 1982.  

The vented study was conducted in Idaho Springs, Colorado at 39° 44'° N, 105° 30'° 

W. Atmospheric pressure is 29.65 in. Hg. Each configuration was tested 3 times for 5-7 

consecutive hours on clear days in January and February of 1979. The measured variables 

include temperature and air velocity at the glazing surface, mass wall surface, within the air 

gap, and within the inlet and outlet vents.  

Wind and film coefficients. 

 An estimation of a convective film coefficient for all exterior boundaries was used to 

incorporate ambient wind speed from the weather data into the model. This boundary 

condition enables solid elements to transfer heat to the exterior air volume if no velocity 

boundary conditions are set. Tests were run prior to setting an exterior air volume or film 

coefficient boundary which led to a constant increase in the temperature of the model interior 

and structure.  

To incorporate the entire wind flow field as a function of time and direction would be 

too labor intensive for design modeling purposes. The approach used in this model was an 

average film coefficient for all exterior surfaces. Both test cells were low-rise and in low 

wind speed regions (0 mph to 5 mph). In low wind speed regions, the film coefficient is 

driven mainly by natural convection and can be calculated from temperature difference 

between the exterior surface and the ambient temperature (Yazdanian & Klems, 1994). 

Temperature differences between 20 and 40°F in low wind speed regions for both windward 

and leeward surfaces result in film coefficients between 3 and 5 W/m2K. A film coefficient 
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of 4 W/m2K with a reference to transient ambient temperature was used as a boundary 

condition on all exterior surfaces.  

Solar heating analysis. 

Solar radiation through the glazing of the Trombe wall drives both the buoyant air 

flow in the air gap and provides energy to be stored within the absorptive thermal mass. Solar 

heating in Autodesk CFD can simulate the effect of solar heat radiating onto structures using 

the Radiation solver (Solar Heating, 2016). In the Physics tab of the Solver the date, time, 

and orientation of the structure can be input into the solar heating dialog (as seen in Figure 

12). In the heat transfer dialog, the direction of gravity was defined as (0,0, -1) and east was 

defined in the direction of the positive y-axis. 

 

Figure 12: Solar heating dialog in Autodesk CFD 2016. Location and time of vented study 

are input manually. 

 

From these inputs, the sun position is calculated and will change with respect to time 

during a transient analysis. The default solar heat flux is defined in the flag manager as 910 

W/m2. This value was manipulated for each simulation based on the maximum insolation 

value measured within the corresponding test. The maximum solar heat flux measured for a 
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vertical surface during the eight days of unvented data was 285.4 Btuh/ft2 (1603.5 W/m2). 

The maximum values of solar insolation on a vertical surface for the vented study ranged 

between 268 and 304 Btuh/ft2.  

During the simulation, the solar heat flux could be visualized and verified to actual 

measured values. Figure 13 shows the result quantities of solar heat flux on the surface mesh 

elements at 4:00pm. As expected, during the evening the east wall is mostly shaded while the 

south and west wall are receiving a majority of the solar radiation. The solar heat flux value 

on the exterior surface of the south facing glazing of the model was between 320 and 360 

W/m2. The corresponding measured value at the same time was 60 Btuh/ft2 (340.7 W/m2) 

which matches well with the model values.

 

Figure 13: Solar heat flux displayed on the mesh of vented model. 
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Exterior temperature. 

The measured ambient exterior temperature was input as a .csv file into the solar 

heating study temperature reference dialog. The condition is set to transient and the 

piecewise linear function form was filled in with an imported .csv file that had temperature 

values in Fahrenheit change every 3600 seconds for the unvented study and 900 seconds for 

the vented study. Figure 14 shows the dialog for inputting transient temperatures as well as a 

plot for two days of hourly temperatures.   

 

Figure 14: Transient piecewise linear function of temperature over two days. 

 

Initial conditions. 

The storage effect of the thermal mass is an important consideration when simulating 

passive solar buildings. The mass wall, depending on thickness and material properties, 

stores energy from solar radiation and warmer surrounding temperatures then emits this 

energy at night when the surrounding space is cooler. The energy stored in a mass wall at any 

time is dependent on how much energy was supplied and removed from multiple consecutive 
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days beforehand. The internally stored energy must be recreated in a simulation. This can be 

done by conditioning the model’s solid geometry with multiple days of radiation and night 

temperatures. Or, if the temperature gradient of the mass wall interior is known, defining 

these conditions and conditioning the surrounding air flow in a steady-state analysis.  

 Two strategies were used to create the starting thermal condition of the mass wall 

and interior air space. These strategies were employed based on available data. For the 

unvented study, there were multiple consecutive days of data which could be used to 

condition the materials.  

For the vented study, the initial conditions of the thermal energy stored within the 

mass wall were defined by the first hour of sensor data from the interior of the mass wall. 

The mass wall was split into 3 vertical zones and 4 horizontal zones. The temperature of 

these zones was determined by the average of the four surrounding thermocouples at 15-

minute increments. The thermocouples were installed at 30 and 79 inches above the bottom 

of the mass wall at depths of 0, 1, 3, and 6 inches from the air gap surface of the mass wall.  

The zones of the vented wall can be seen in Figure 15. The zone temperatures at the first time 

step of each test were input into representative split volume zones of the model mass wall. 

Table 4 shows the initial mass zone and air temperature input for each vented model 

configuration. Initial conditions of the air volumes were set based on the measured values of 

the first time period in each study.  
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Table 4 

Initial Conditions of Vented Model Mass Wall and Interior Air Temperature for Vented 

Model 

Test 

Initial 

Air 

Temp 

11 12 13 14 21 22 23 24 31 32 33 34 

2inch_1 72.35 108.7 82.9 62.7 59.1 115.2 86.3 61.5 57 108.8 82.3 59.8 55.4 

2inch_2 62 78.4 67.8 66 66.4 77.3 65.1 63.8 64.4 74.3 63.5 61.4 62.1 

4inch_1 75.6 91.9 84.6 83.8 83 90.8 82.7 81.6 80.8 86.6 79.8 78.5 77.9 

4inch_2 79 93.7 86.7 86.7 86.1 92.5 84.9 84.7 84.3 89 82.5 81.9 81.8 

6inch_1 68.95 82.5 75.6 74.8 73.7 80 73.3 72.9 72.3 77.6 71.2 71 70.9 

6inch_2 66.3 82.7 70.7 63.7 61.9 91.3 74 63.7 61.1 88.6 72.3 62.4 60.1 

 

 

Figure 15. Monitored zones for thermal energy storage for EEG vented study. 
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Auxiliary heating and ventilation. 

 The Los Alamos study used average power measurements from light bulbs to gauge 

passive heating performance. The interior temperature of cells 1, 2, and 11 was maintained at 

65°F by a 500W light bulb. The light bulb would be off while the sensor in the center of the 

room read temperatures above 65°F and would turn on when the measurement read below. 

The power rating of the light bulbs was added whenever a scan indicated that the cell was 

receiving auxiliary heat. The accumulated sum was divided by the number of scans to obtain 

the average hourly power used by the light bulbs in watts. Cell 12 had no auxiliary heating. 

The auxiliary heat in cells 1, 2, and 11 were accounted for in the model using the total heat 

generation boundary condition. This condition was applied to a volume of comparable size to 

a light bulb within each cell.  The hourly averaged power was input into a piecewise linear 

table for each cell. The auxiliary heat for cells 1 and 2 are shown in Figure 16. The EEG 

study had no source of auxiliary heat. When total heat generation was included as a boundary 

condition the interior temperature would increase rapidly before the simulation diverged and 

terminated. This may indicate an improper application of the total heat generation boundary 

condition or an improper representation of the light bulb heat source. There were light 

emitting diode (LED) materials in the Autodesk database, but these required PCB 

components. 
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Figure 16. Auxiliary Heat of Los Alamos Test Cells 1, 2, 11, & 13. 

  

The Los Alamos study also used mechanical centrifugal fans with a constant flow rate 

of 1125 ft3/h (0.00875 m3/s) in order to pressurize the geometry and reduce unknown 

infiltration (Ellis, 2003). This air change rate was a nominal value standardized to 

atmospheric pressure at the test cell elevation. Only cells 1 and 2 of the modeled cells had 

fans. Fans were represented in the model using a geometry of similar size and a constant flow 

rate boundary condition of 0.00875 m3/s. The inclusion of the flow rate boundary condition 

as a representation of the mechanical fan similarly resulted in the simulation reaching 

divergence before completing the allotted time.  No fans were used in the vented study and 

the infiltration was not included in the referenced report, attributing further to uncertainty in 

the model results.  

 

Creating the Mesh and Solving Parameters 

The mesh and the solving parameters chosen have a large impact on how quickly and 
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the simulation computer used also affects the computational time. A computer with a 2.3 

GHz processor and 4GB of RAM was used for all simulations.  

Volume based mesh auto sizing was used with finer mesh sizing on volumes where 

sensors were located. Once the mesh was automatically sized the glazing and mass wall 

volumes were selected and refined. The automatic mesh sizing tool in Autodesk CFD breaks 

the geometry into tetrahedral volumes. The flow and heat transfer partial derivative equations 

are solved across nodes of the tetrahedral mesh within each time step. Once the mesh was 

automated and regionally refined it was visually verified that at least two nodes were across 

all material thicknesses to allow heat to transfer more accurately. Both the surface and gap 

refinement tool proved useful when defining the mesh. The difference between a coarse mesh 

and fine mesh definition of the vented test cell is shown in Figure 17. The model with the 

coarse mesh, composed of 51 thousand solid volumes, took approximately two hours to 

complete an eight-hour transient analysis using a time step size of 60 seconds. The fine mesh 

definition, composed of 1.35 million solid volumes, took approximately 16 hours. A 

combination of a coarse and fine mesh was used.  

  

Figure 17. Coarse mesh (right) and fine mesh (left) of the vented model. 
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There are multiple turbulence models available in Autodesk CFD. Studies have used 

k-epsilon and renormalized groups to numerically solve heat transfer in the air gap of 

Trombe walls (Zamora & Kaiser, 2009). In most indoor environmental analyses, a standard 

k-epsilon model can provide satisfactory results (Chen & Srebric, 2002). For this study k-

epsilon was chosen as the turbulence model. Both low Re and RNG were attempted but they 

either took more computational time than necessary or could not reliably complete the full 

time frame of the simulation without diverging. Apart from the turbulence model an 

advection scheme must be chosen. The advection scheme determines the numerical method 

of propagating results of surface elements through the solution mesh. The advection scheme 

suggested for transient heat transfer and for pressure driven flow analyses was the Petrov-

Galerkin numerical method (Troubleshooting - Advection Schemes, 2014). Advection 

scheme 2 was used at first but often led to divergence in the CFD system of equations. 

Advection scheme 5 proved to be a more stable method for both models.  

Monitor Points and Data Analysis 

In order to validate the CFD simulations, the same variables must be measured in the 

simulation as were measured in the experimental test cells. This requires that monitor points 

are placed in the model in the same location as the sensors are reported to be located in the 

actual test cells. For the unvented study this is mid-height and center on the south and north 

wall and in the middle of the interior air space 6 feet high for each cell. A cross section of the 

center plane, as well as the south wall elevation, show the approximate location of the 

sensors (as seen in Figure 18). The measured values from the sensor points over eight 

consecutive days are displayed in Figures 19 and 20. Type K thermocouples were used which 

have a graded accuracy of +/- 0.75% or +/-2.2°C (McFarland, 1982; Thermocouples, n.d.).  
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Figure 18. Location of Los Alamos test cell monitor points in section view (left) and south 

elevation (right). 

 

 
Figure 19. Los Alamos test cell 1 interior and exterior temperatures. 
 

 
Figure 20. Los Alamos test cell 2 interior and exterior temperatures. 
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For the vented study there were both thermocouples and velocity probes set 

throughout the air gap and mass wall. The main sensors of interest are the temperature 

sensors centered in the duct gauging the temperature of the air entering and leaving the air 

gap. There were velocity probes set at 24 inches from the floor of the centerline. The probes 

were set on the inside surface of the glazing and every 0.5 inches till the surface of the mass 

wall. The readings of temperature sensors at 13, 30, 79, and 87 inches in height on the 

centerline and along the inside surface of the glazing and air gap surface of the mass wall 

were also compared. The approximate locations of the sensors in the model, including those 

discussed earlier within in the mass wall, can be seen in Figure 21. The thermocouples were 

calibrated to +/- 0.75 °F while the velocity probes were accurate to +/-5.3% for velocities 

exceeding 0.3 ft/sec (McFarland, 1982). 

  

Figure 21. Location of 4-inch gap vented model monitor points in section view (left) and 

south elevation (right). 
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Chapter Four: Results and Discussion 

Visualizations of Air Flow Patterns 

In Autodesk CFD, there are many options when visualizing the results of a 

simulation. The plane feature was used to view the results within the same plane that the 

actual sensors were installed, centered horizontally. Further visualization, mainly using the 

global results tool shown in Figure 22, was performed to ensure that believable values 

existed throughout the model. The visualized results of multiple time steps can be viewed if a 

save interval was defined in the simulation parameters. This feature was used when checking 

that solar heat flux values were tracking appropriately over time. Results of the most recent 

time step can also be seen during the simulation. If the temperature and air velocity of the 

interior space exceeded a believable range during the simulation it was expected that there 

was an error and the simulation was about to diverge. Visualization was useful in monitoring 

how boundary conditions behaved; it was most useful when monitoring how the interior air 

fluid reacted to these boundary conditions. 

 

Figure 22. 3D global visualization of temperature gradient in Los Alamos model. 
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The plane visualizations of the models show an expected air flow as a result of the 

solar heat gain of the Trombe wall. In the vented system of the EEG study, a negative 

pressure is created within the air gap between the glazing and mass wall. This negative 

pressure brings air from the room into the air gap. The air in the air gap is then heated 

causing it to elevate and redistribute into the room through the top duct. The expected 

buoyant air flow is seen in Figure 24.  

 

Figure 23. EEG vented model temperature distribution along the center horizontal plane, 

4inch air gap at 4:30pm Feb 14, 1979. 

 

 

Figure 24. EEG vented model velocity magnitude plane and vector profile along the center 

horizontal plane, 4inch from 4:30pm Feb 14, 1979. 
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The unvented Trombe wall configuration of the Los Alamos study likewise causes a 

buoyant air flow on either side of the heated mass wall, sometimes competing with air 

circulating in the room. From the visualization of cells 1 and 2, it seems as though the 

temperature of the mass wall and room increase the circulation of the air rises and becomes 

more concentrated on the mass wall. While there were not air velocity sensors in the 

unvented study it was assumed that the values fell within a believable magnitude range 

determined by ASHRAE 55 comfort standard. Temperature ranges were slightly higher than 

expected for winter conditions though still within believable ranges. 

      

Figure 25. Los Alamos Labs test cells 1(left), 2 (right). An example of temperature 

distribution and air flow.  Results correspond to climate data input from 2/15/82 at 2:00PM. 

 

Viewing the results through two-dimensional slice or planes allows the user to view 

the temperature and air velocity field within regions normally occupied by people. ASHRAE 

55 defines the occupied zone as within 6 feet above the floor, more than 3.3 feet from 

exterior walls, and 1 foot from interior walls (ASHRAE, 2010). The suggested temperature 

difference from approximately ankle level to head height is 5.4° F. An ideal air velocity in 

winter months would be below 0.5 ft/second or below 0.8 ft/second in summer months. 

While these ranges of acceptable thermal comfort conditions vary depending on other 
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conditions such as exterior climate, clothing, and activity level they give a good starting point 

when gauging the performance and plausibility of the simulated models. The final 

simulations for both the unvented and vented models showed believable temperature ranges 

and expected buoyancy driven air flow direction and magnitude.  

 

Monitor Points Results  

While visualization of results can be important in design optimization and problem 

area identification it is the purpose of this study to look at the accuracy of the model in 

relation to point measurements of temperature and air velocity. The results of the unvented 

study showed a similar sinusoidal diurnal pattern did exist the amplitudes did not compare. 

The vented study showed much better agreement to actual results though there was still a 

consistently lower temperature in the model data around midday.  

The Los Alamos study was chosen to see whether the model could recreate a similar 

sinusoidal interior temperature pattern due to multiple diurnal cycles. The simulated results 

for cell 1 and 2 can be seen in Figures 26 and 27, respectively. These simulations were run 

with a time step of 3600 and 5 iterations within each time step. The conditioning method of 

the unvented study was able to stabilize the results to a diurnal pattern similar to actual 

within the first two or three days. However, comparing the air gap temperatures resulted in a 

maximum temperature difference of 55° at peak solar insolation. The interior temperatures 

are consistently within 10° of one another after the initial two or three days of conditioning. 

The day with the least amount of error between actual and model was 2/18 which reported 

solar insolation values much lower than surrounding clear sky days. Two possibilities for this 

error are that the radiation condition was not accurately defined or the radiative heat transfer 
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through the Trombe wall materials is not appropriately accounted. The latter could be due to 

variance between reported material properties and actual. If the transmissivity of the glazing 

was lower than the reported value, it would allow more solar radiation to reach the air gap 

and mass wall, increasing the temperatures. There is also the possibility of inaccurately 

measured data. The temperature sensors were shielded but may have recorded much higher 

temperatures if exposed to direct solar radiation through the glazing. It should also be 

considered that these simulations did not include the reported auxiliary heat and fan which 

would affect the overall accuracy. 

 

Figure 26. Los Alamos cell 1 model results compared to actual. 
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Figure 27. Los Alamos cell 2 model results compared to actual. 

 

The vented study had measured data for the interior of the mass wall. This data was 

used to both condition the initial internal temperatures of the mass wall and to test the ability 

of the CFD tool to account for conductive heat transfer. The low conductivity and high 

specific heat of the mass wall material slow the transfer of heat to the interior. The energy 

obtained from midday, a period of peak solar insolation, is offset and slowly distributed to 

the interior space during periods of no solar heat gain. Figures 28, 29 and 30 show the 

comparison between measured and simulated internal wall temperatures at 13, 46, and 79 

inches in elevation and centered horizontally on the mass wall. The results of the vented 

model with a heavyweight concrete defined are shown in Figures 28 to 30 and the 

lightweight concrete model results are shown in Figure 31 to 33. The vented study only 

reported daytime values. Realistic night temperatures were input for the simulation of the 
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heavyweight concrete in order to see whether the model mass wall temperatures were 

plausibly maintained without a source of solar radiation. 

 

Figure 28. Internal heavyweight mass wall temperatures of the first 1 to 3 inches away from 

the glazing. Simulated 4inch vented model compared to measured data. 

 

Figure 29. Internal heavyweight mass wall temperatures of first 3 to 6 inches away from the 

glazing. Simulated 4inch vented model compared to measured data. 

 

Figure 30. Internal heavyweight mass wall temperatures of 6 to 12 inches away from the 

glazing. Simulated 4inch vented model compared to measured data. 
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The peak temperatures of the layer nearest to the glazing, 1 to 3 inches, was 

approximately two hours earlier in the measured data than in the simulated data. The peak 

temperature of the 6 to 12 inch zone was much lower and much later in the day. The ability 

of the interior layer of the mass wall to maintain temperature agreed well with the expected 

thermal lag characteristics of the Trombe wall. A higher density or lower specific heat would 

slow the heat transfer through the masonry and result in a later peak temperature in the 

model. The model with the lightweight properties showed a closer depiction of the actual 

internal mass heat transfer.  The center vertical zones showed the highest temperatures in 

both models similar to actual. The simulated peak temperatures of the 1 to 3 inch zone were 

lower in both the heavyweight and lightweight model. Consistently lower temperatures 

further suggest a discrepancy between input radiation conditions and actual solar radiation. 

 

Figure 31. Internal lightweight mass wall temperatures 1 to 3 inches away from the glazing. 
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Figure 32. Internal lightweight mass wall temperatures 3 to 6 inches away from the glazing. 

 

Figure 33. Internal lightweight mass wall temperatures 6 to 12 inches away from the glazing. 

 

The direct comparison of temperatures within the inlet and outlet ducts of the vented 

wall study show a common pattern of lower predicted temperatures midday. Figures 34, 35, 

and 36 show the vented 2, 4, and 6 inch gap model results compared to actual results. The 

results of the following simulations were run with time steps of 60 seconds. The model takes 

a few iterations to level out the difference in temperatures between the ducts as the air flow 

and convective heat transfer is initialized. This initial temperature was set based on the 

temperature of the interior space at the first recorded time. With a 60-second time step, it 

would appear the temperatures of the inlet and outlet duct are able to stabilize within the first 

hour of the simulation.  
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Figure 34. Actual inlet and outlet duct temperature compared to 2inch gap model results. 

 

Figure 35. Actual inlet and outlet duct temperature compared to 4inch gap model results. 

 

Figure 36. Actual inlet and outlet duct temperature compared to 6inch gap model results. 
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The simulations of the vented study model agreed well with actual results. Of the 

three reported simulations, all monitor point temperatures were within 10% of actual. More 

than 80% of the measurements between the three reported simulations were within 5° F of 

actual results. The period of time with the most discrepancy was during the conditioning 

period in the first hour and during hours of high solar insolation.  

The vented study was also useful in investigating how the velocity profile in the air 

gap would compare to the actual scenario. The flow rate and temperature difference of the 

two ducts can determine how much convective heat is being added to the air before being 

supplied to the room. Figures 37, 38, and 39 show the hourly simulated air velocity every 

quarter of an inch between the glazing and the mass wall. The table values of the actual 

measurements were not accessible but the graphs included in the report provide a good 

comparison of maximum values and profile (Casperson & Hocevar, 1979, pp. 43-48).  

 

Figure 37. Hourly air velocity profile of 2inch model (left) compared to actual (right). 
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Figure 38. Hourly air velocity profile of 4inch model (left) compared to actual (right). 

  

Figure 39. Hourly air velocity profile of 6inch model (left) compared to actual (right). 
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The sensors were located in the air gap 24 inches above the floor in the center 

horizontal plane. The velocity profiles act as expected in profile and relationship to one 

another; however, the model air velocity magnitudes are consistently greater than actual 

measurements. The difference in modeled air velocity to actual increases as the air gap width 

decreases. The maximum average velocities are off by 0.41 ft/ sec for the 2 inch gap, 0.39 

ft/sec for the 4 inch gap, and 0.15 ft/sec for the 6 inch gap. The flow became more fully 

developed the further from either surface. High velocity magnitudes are seen closer to the 

hotter surface mass wall. The relationships between the air gap size and the mximum velocity 

are cloesly realted. In both the actual and model results the maximum velocity in the 2-inch 

gap is approximately two times as much as the maximum velocity in the 6 inch gap. The 

highest magnitudes are when there is the most solar radiation direct on the glazing surface 

around 1PM and 2PM.  

 

Effects of Numerical Schemes 

The number of time steps, iterations, and the size of the mesh can have a large impact 

on the time of the simulation and the accuracy of the results. The turbulence model chosen 

would also affect results. An analysis of the different turbulence models on the model results 

was unable to be done as only the k-epsilon model was able to complete a full simulation. 

The impact of time step size on results was investigated as an indication of variation caused 

by user input solving parameters. Autodesk suggests a time step size of 100 seconds for 

studies involving transient solar radiation over multiple days (Solar Heating, 2016). A 

reference study that looked at time step sensitivity using Autodesk CFD to calculate internal 
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building temperature showed that the larger the time step size the larger the temperature 

fluctuation range (Albatayneh, Alterman, Page, & Moghtaderi, 2015).  

The vented 4-inch model was run with three different time step sizes: 900, 300, and 

60 seconds. The model used for the time step sensitivity analysis had 7.5 hours of 15-minute 

measured data. Results were compared against one another and then to actual data. Results 

showed a larger temperature fluctuation with time steps of 900 seconds compared to 300 or 

60 seconds. The time it takes for temperatures to stabilize from the initial condition is also 

increased with larger time steps. The compared results in Figure 40 show that the run with a 

time size of 60 seconds was able to stabilize within the first hour and maintain a tighter range 

of temperatures. The 900 second time step did not reach a stabilized state until approximately 

1:30 pm with a much larger temperature range.  

 

Figure 40. Time step sensitivity results using 4 inch vented model. Time step sizes include 

60 seconds, 300 seconds, and 900 seconds. 
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intervals. The box plot of Figure 41 shows the range of temperature differences and the 

average temperature difference for both inlet and outlet sensors for each time step size. The 

60 second time step size shows the least temperature difference from actual. Both inlet and 

outlet averaged below 5° F difference. The increase in temperature fluctuation is with larger 

time step sizes is depicted well in comparing the increasing range of temperature differences 

from actual, especially in the outlet temperature measurements.  

 

Figure 41. The range and average temperature difference from actual by time step size. 

 

The time step size input has an effect on the accuracy of the model. A smaller time 

step size may increase results but it also increases the computational time of the simulation. 

Table 5 lists the time it took to simulate 7.5 hours using time step sizes of 1 minute, 5 

minutes, and 15 minutes. The accuracy of each simulation was also listed. The percentage of 
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model data that was within 5° of actual data for both inlet and outlet temperatures was used 

as a measure of simulation accuracy. The simulations were run on an ASUS K501 with a 

Dual-Core Pentium CPU @ 2.30 GHz processor with an installed memory (RAM) of 4GB. 

 

Table 5 

 

Results of Time Step Size Sensitivity Listing Computation Time and Accuracy of Simulations 

Run with Time-step Sizes of 60, 300, and 900 Seconds 

Time Step Size 

(sec) 
# of Time Steps Computation Time 

% Inlet Temps 

within 5° of Actual 

% Outlet Temps 

within 5° of Actual 

60 450 4 hours 46 min 68% 58% 

300 90 2 hours 10 min 32% 42% 

900 30 0 hours 56 min 13% 55% 
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Chapter Five: Conclusions 

The use of computer simulations in building design allows for the designer to better 

understand and predict the building’s performance. The goal of this research was to validate 

Autodesk CFD for use with Trombe walls by modeling and comparing the results to past 

experimental studies. A model of both unvented and vented Trombe wall test cells from past 

experimental studies were created and simulated in Autodesk CFD. The methodology 

included the creation of geometry, definition of materials, definition of boundary conditions, 

definition of initial conditions, creation of a mesh, and creation of solving parameters. All 

steps within the methodology required the interpretation of properties and conditions from 

the experimental study into the model parameters of the CFD software. Given a digital 

model, the CFD tool was able to solve for energy, mass, and momentum over the discretized 

geometry to recreate heat transfer and air flow representing real world conditions. 

While this study shows that the accuracy of a model largely depends on the user’s 

ability to operate the software and the availability of good material properties, it also shows 

that Autodesk CFD can be useful in the analysis of systems like Trombe walls. The 

visualization of the interior temperature and air flow patterns were as expected and even 

provided further multi-dimensional information that could prove useful during the early 

phases of design. The point-to-point comparison did not prove to be accurate within the 

expected errors of the sensors. The Los Alamos study simulations showed exaggerated 

temperature fluctuations during the day and night. The vented study model results showed 

that the CFD tool was able to replicate the air flow and mass wall heat transfer of a Trombe 

wall to some degree of accuracy.  
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An analysis was done on the effects of time step durations on model results. The 

shorter the time step size the longer the computational time and closer to actual results. The 

mesh refinement also had an effect on computational time but result accuracy was not 

analyzed in this study. If an equally reasonable result can be reached with longer time steps 

and coarser mesh, it would decrease the amount of time needed to complete a design study 

with multiple runs.  

While this study may not have accomplished the goal of software validation, a useful 

framework methodology was created. The continued modeling and validation of passive 

solar techniques such as Trombe walls using Autodesk CFD or similar CFD tools are 

suggested to further the adoption of comfort as a performance metric and CFD as a building 

science tool.  

 

Future Recommendations 

There are both short term and long term recommendations stemming from this 

research. The short term recommendations stem from a recognition of result variability due 

to user inputs such as time step sizes and mesh definition. This study investigated variation in 

time step size but it would be beneficial to further define suggested time step sizes for 

various building analysis purposes. Mesh definition was investigated briefly in this study to 

find a useful balance between the accuracy of a fine mesh and the quick computation time of 

a coarse mesh. Further investigation into the effect of mesh sizing on results needs to be 

completed.  

The long term recommendation is for the continued exploration of passive solar 

building design using computational fluid dynamics. The integration of current building 
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energy simulation practices with computational fluid dynamic tools requires further research 

into workflow and validation of indoor environments. Many of the impediments discussed in 

this paper stemmed from the limited availability of experimental study data. A combined 

approach, in which the researcher has direct access to the material and sensor data, would 

enable the researcher to control and account for any uncertainties.  A three-dimensional array 

of both temperature and air velocity sensors installed within the experimental module would 

enable the researcher to compare to the full capability of a simulated three-dimensional 

model. The visualization of the simulated results showed a variation in air flow magnitude 

and temperature within the air gap due to shading that would not be recognized by a single 

plane of sensors.  

Further recommendations into the design of experimental modules for the purpose of 

validation include varying geometry and materials. Validation of a Trombe wall in a full 

sized building to understand the extent of the flow and temperature characteristics would be 

more beneficial to designers. Other passive solar design techniques or even a combination of 

passive and active systems can be examined using Autodesk CFD. Only masonry Trombe 

walls were investigated in this study; Trombe walls that incorporate water walls or phase 

change materials could be analyzed further with a tool specialized for fluid analysis.  

Autodesk CFD is a verified product and compatible with design software used in the 

building industry. This study explored a simplified building workflow from geometry to 

analysis. A more defined workflow between particular CAD, BIM, BES, and CFD software 

that can be referenced by design firms would be beneficial to the industry. This workflow 

could include and analyze the capability to set up and monitor thermal mannequins in 

Autodesk CFD as a measure of comfort performance. The creation of a design protocol that 
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gives users a range of suggested inputs and a method of optimization would be helpful to 

building designers who may not have extensive CFD knowledge. Example inputs would 

include material properties and sizing of the glazing and thermal storage wall. A method of 

optimization could be the measured PMV or PPD score of thermal mannequins set up in 

expected occupied areas. Any simulation tool, when used for building design, requires a great 

deal of user knowledge and experience. Further research into the use of CFD tools for 

Trombe wall design will increase user confidence and knowledge.  
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